Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ján Lokaj, ${ }^{\text {a }}$ Viktor Kettmann, ${ }^{\text {b }}$ * Viktor Milata, ${ }^{\text {a }}$ Jarmila Štetinová ${ }^{\text {a }}$ and Ognyan Petrov ${ }^{\text {c }}$

${ }^{\mathrm{a}}$ Faculty of Chemical Technology, Slovak Technical University, Radlinskeho 9, Bratislava 81237, Slovak Republic, ${ }^{\text {b }}$ Faculty of Pharmacy, Comenius University, Odbojarov 10, Bratislava 83232, Slovak Republic, and ${ }^{\text {c Department of }}$
Organic Chemical Technology, Faculty of
Chemistry, University of Sofia, Sofia 1126, Bulgaria

Correspondence e-mail:

kettmann@fpharm.uniba.sk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.058$
$w R$ factor $=0.106$
Data-to-parameter ratio $=16.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Methyl (4-formyl-2-methoxycarbonylpyrrol-1-yl)acetate

The title compound, $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{5}$, belongs to a broad class of nitrogen heterocycles widely used in medicinal chemistry as well as the pharmaceutical and chemical industries and was selected for crystal structure determination in order to elucidate the conformation of the substituents bonded to the pyrrole ring and the extent of π-electron delocalization. There is structural evidence that both the 2-methoxycarbonyl and 4formyl groups interact with the π-cloud of the pyrrole ring. The second methoxycarbonyl group at N1 is twisted out of the pyrrole plane due to rotations around the methylene bonds.

Comment

Polysubstituted and polycondensed pyrrolyl derivatives have found widespread applications as drugs, polymers, dyes, agrochemicals etc. (Gribble, 1996). The title compound, (I), has also been exploited in the synthesis of other heterocyclic derivatives, such as 4-pyrrolyl-1,4-dihydropyridines or glutaric acid derivatives (Milata et al., 2001), which are of interest because of their calcium channel blocking activity. The present crystal structure determination was undertaken in order to establish the conformation of the substituents bonded to the pyrrole ring and the degree of π-electron conjugation.

(I)

A drawing of the molecule is shown in Fig. 1. As expected, the central pyrrole ring is planar within experimental error (r.m.s. deviation $0.003 \AA$). The distortion of the pyrrole ring from $C_{2 v}$ symmetry is considerable and concerns mainly the two $\mathrm{N}-\mathrm{C}$ bonds which differ by a very significant amount, viz. 18σ. The 2-methoxycarbonyl group (at C5) is roughly coplanar with the mean plane of the pyrrole ring [dihedral angle $\left.7.0(2)^{\circ}\right]$; similarly, the formyl group lies exactly in the pyrrole plane [torsion angle $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 11-\mathrm{O} 12=-0.4(4)^{\circ}$]. Furthermore, the $\mathrm{C} 3-\mathrm{C} 11$ and $\mathrm{C} 5-\mathrm{C} 13$ bond distances of 1.434 (3) and 1.449 (3) A, respectively, are significantly shorter than the value of 1.487 (5) \AA reported for a Csp $p^{2}-\mathrm{Csp} p^{2}$ single bond (Shmueli et al., 1973). These results indicate that there is some degree of π-electron delocalization from the heterocyclic ring into the $\mathrm{C} 11-\mathrm{O} 12$ and $\mathrm{C} 13-\mathrm{O} 14$ carbonyl bonds.

Received 27 February 2001
Accepted 30 March 2001
Online 6 April 2001

Figure 1
View of a molecule of the title compound with its numbering scheme. Displacement ellipsoids are shown at the 35% probability level and H atoms are drawn as spheres of arbitrary radii.

As revealed by the Cambridge Structural Database (Allen \& Kennard, 1993), similar features have also been observed for compounds having electron-withdrawing substituents in the 2and/or 4-positions of the pyrrole ring. The second methoxycarbonyl group of the molecule is rotated around the $\mathrm{N} 1-\mathrm{C} 6$ and $\mathrm{C} 6-\mathrm{C} 7$ bonds [torsion angles $\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7=$ $79.5(3)^{\circ}$ and $\left.\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 8=-3.7(3)^{\circ}\right]$, so that it makes an angle of $76.5(3)^{\circ}$ with the pyrrole plane.

As the molecule has no potential hydrohen-bond donor, the packing is governed by van der Waals interactions.

Experimental

The title compound was prepared by a two-step reaction. In the first step, to a stirred solution of methyl 2-pyrrolylcarbocylate (0.1 mol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{ml}), \mathrm{CH}_{3} \mathrm{NO}_{2}(20 \mathrm{ml})$ and $\mathrm{AlCl}_{3}(30 \mathrm{~g})$ was added dropwise a solution of 1,1-dichloromethyl methyl ether in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(150 \mathrm{ml})$ at 273 K . After 1 h , the reaction mixture was poured on to ice/water, extracted with chloroform, dried with sodium sulfate, evaporated to dryness and recrystallized from CCl_{4}. To a stirred solution of methyl 4-formylpyrrolyl-2-carboxylate (50 mmol) obtained above in 20 ml of dimethylformamide (DMF) was added potassium tert-butoxide (55 mmol) and tetrabutylammonium bromide (5 mmol) in 20 ml of DMF at 313 K . After 3 h a solution of alkyl bromoacetate (60 mmol) in 20 ml of DMF was added dropwise and stirred for 3 h . The DMF was evaporated, the residue dissolved in 80 ml of $\mathrm{H}_{2} \mathrm{O}$, neutralized with concentrated hydrochloric acid and extracted with chloroform. The extract was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and crystallized from toluene-cyclohexane (m.p. 343-345 K).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{5} \\
& M_{r}=225.20 \\
& \text { Monoclinic, } P_{1} / c \\
& a=5.101(1) \AA \\
& b=20.098(4) \AA \\
& c=10.461(2) \AA \\
& \beta=90.31(3){ }^{\circ} \AA^{\circ} \\
& V=1072.4(4) \AA^{3} \\
& Z=4 \\
& D_{x}=1.395 \mathrm{Mg} \mathrm{~m}^{-3} \\
& D_{m}=1.39(1) \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Data collection

Syntex $P 2_{1} / c$ diffractometer	$h=0 \rightarrow 6$
$\theta / 2 \theta$ scans	$k=0 \rightarrow 26$
2623 measured reflections	$l=-13 \rightarrow 13$
2485 independent reflections	2 standard reflections
1469 reflections with $I>2 \sigma(I)$	every 98 reflections
$R_{\text {int }}=0.038$	intensity decay: 2%

$\theta_{\text {max }}=27.6^{\circ}$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0356 P)^{2}\right. \\
+0.4874 P] \\
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.002 \\
\Delta \rho_{\max }=0.13 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.18 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.106$
$S=1.04$
2485 reflections
147 parameters
H-atom parameters constrained

$$
\begin{aligned}
& h=0 \rightarrow 6 \\
& k=0 \rightarrow 26 \\
& l=-13 \rightarrow 13 \\
& 2 \text { standard reflections } \\
& \text { every } 98 \text { reflections } \\
& \text { intensity decay: } 2 \%
\end{aligned}
$$

Table 1

Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

N1-C2	$1.338(3)$	$\mathrm{C} 3-\mathrm{C} 11$	$1.434(3)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.383(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.359(3)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.446(2)$	$\mathrm{C} 5-\mathrm{C} 13$	$1.449(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.370(3)$	$\mathrm{C} 11-\mathrm{O} 12$	$1.199(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.404(3)$	$\mathrm{C} 13-\mathrm{O} 14$	$1.196(3)$
C2-N1-C5	$108.48(16)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 11$	$128.47(19)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$	$122.77(17)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$107.42(18)$
C5-N1-C6	$128.75(17)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$108.03(17)$
N1-C2-C3	$109.23(19)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 13$	$129.62(19)$
C2-C3-C4	$106.84(18)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 13$	$122.35(18)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 11$	$124.7(2)$		
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$	$79.5(3)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 11-\mathrm{O} 12$	$-0.4(4)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 8$	$-3.7(3)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 13-\mathrm{O} 14$	$-7.6(3)$

Although the H atoms were located in a difference Fourier map, they were refined with fixed geometry, riding on their carrier atoms, with $U_{\text {iso }}$ set to 1.2 (or 1.5 for the methyl H atoms) times $U_{\text {eq }}$ of the parent atom. Both methyl groups were allowed to rotate about their local threefold axis.

Data collection: Syntex Software (Syntex, 1973); cell refinement: Syntex Software; data reduction: XP21 (Pavelčík, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97.

This work was supported by the Grant Agency of the Slovak Republic (project Nos. 1/8216/01 and 1/6095/99).

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News 8, 1, 31-37. Gribble, G. W. (1996). Pyrroles and their Benzo Derivatives: Applications. In Comprehensive Heterocyclic Chemistry II, Vol. 2, edited by A. R. Katritzky, C. V. Rees \& E. F. V. Scriven, ch. 2.04. Amsterdam: Elsevier.

Milata, V., Petrov, O., Ştetinová. J., Bartovič, A., Basch, E.-H. \& Barry, J. (2001). J. Heterocycl. Chem. In the press.

Pavelčík, F. (1987). XP21. Comenius University, Slovakia.
Sheldrick, G. M. (1990). SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Shmueli, U., Shanan-Atidi, H., Horwitz, H. \& Shvo, Y. (1973). J. Chem. Soc. Perkin Trans. 2, pp. 657-662.
Spek, A.L. (1990). Acta Cryst. A46, C-34.
Syntex (1973). Syntex Software. Syntex Analytical X-ray Instruments Inc., Cupertino, California, USA.

